Scott "Dragon" Chacon

also feels that specialization

is for

Home About Code Scribbles Talks § GitHub Twitter LinkedIn TripIt Flickr

GitHub Flow Don't forget to follow @chacon

31 Aug 2011

Issues with git-flow

| travel all over the place teaching Git to people and nearly every class and workshop I've done recently
has asked me what | think about git-flow. | always answer that | think that it's great - it has taken a system
(Git) that has a million possible workflows and documented a well tested, flexible workflow that works for
lots of developers in a fairly straightforward manner. It has become something of a standard so that
developers can move between projects or companies and be familiar with this standardized workflow.

However, it does have its issues. | have heard a number of opinions from people along the lines of not
liking that new feature branches are started off of develop rather than master, or the way it handles
hotfixes, but those are fairly minor.

One of the bigger issues for me is that it's more complicated than | think most developers and
development teams actually require. It's complicated enough that a big helper script was developed to
help enforce the flow. Though this is cool, the issue is that it cannot be enforced in a Git GUI, only on the
command line, so the only people who have to learn the complex workflow really well, because they have
to do all the steps manually, are the same people who aren’t comfortable with the system enough to use it
from the command line. This can be a huge problem.

Both of these issues can be solved easily just by having a much more simplified process. At GitHub, we do
not use git-flow. We use, and always have used, a much simpler Git workflow.

Its simplicity gives it a number of advantages. One is that it's easy for people to understand, which means
they can pick it up quickly and they rarely if ever mess it up or have to undo steps they did wrong. Another
is that we don’t need a wrapper script to help enforce it or follow it, so using GUIs and such are not a
problem.

GitHub Flow

So, why don’t we use git-flow at GitHub? Well, the main issue is that we deploy all the time. The git-flow
process is designed largely around the “release”. We don't really have “releases” because we deploy to
production every day - often several times a day. We can do so through our chat room robot, which is the
same place our Cl results are displayed. We try to make the process of testing and shipping as simple as
possible so that every employee feels comfortable doing it.

There are a number of advantages to deploying so regularly. If you deploy every few hours, it's almost
impossible to introduce large numbers of big bugs. Little issues can be introduced, but then they can be
fixed and redeployed very quickly. Normally you would have to do a ‘hotfix’ or something outside of the
normal process, but it's simply part of our normal process - there is no difference in the GitHub flow
between a hotfix and a very small feature.

Another advantage of deploying all the time is the ability to quickly address issues of all kinds. We can

https://web.archive.org/web/20121223081556/http://scottchacon.com/#code
https://web.archive.org/web/20121223081556/http://nvie.com/posts/a-successful-git-branching-model/
https://web.archive.org/web/20121223081556/http://www.flickr.com/photos/chacon
https://web.archive.org/web/20121223081556/http://scottchacon.com/#scribbles
https://web.archive.org/web/20121223081556/http://twitter.com/chacon
https://web.archive.org/web/20121223081556/http://scottchacon.com/
https://web.archive.org/web/20121223081556/https://github.com/nvie/gitflow
https://web.archive.org/web/20121223081556/http://scottchacon.com/#about
https://web.archive.org/web/20121223081556/http://scottchacon.com/#talks
https://web.archive.org/web/20121223081556/http://www.linkedin.com/in/schacon
https://web.archive.org/web/20121223081556/http://github.com/schacon
https://web.archive.org/web/20121223081556/http://www.tripit.com/people/schacon
https://web.archive.org/web/20121223081556/http://twitter.com/chacon

respond to security issues that are brought to our attention or implement small but interesting feature
requests incredibly quickly, yet we can use the exact same process to address those changes as we do to
handle normal or even large feature development. It's all the same process and it's all very simple.

How We Do It

So, what is GitHub Flow?

= Anything in the master branch is deployable

= To work on something new, create a descriptively named branch off of master (ie: new-oauth2-
scopes)

= Commit to that branch locally and regularly push your work to the same named branch on the server

= When you need feedback or help, or you think the branch is ready for merging, open a pull request

= After someone else has reviewed and signed off on the feature, you can merge it into master

= Once it is merged and pushed to ‘master’, you can and should deploy immediately

That is the entire flow. It is very simple, very effective and works for fairly large teams - GitHub is 35
employees now, maybe 15-20 of whom work on the same project (github.com) at the same time. | think
that most development teams - groups that work on the same logical code at the same time which could
produce conflicts - are around this size or smaller. Especially those that are progressive enough to be
doing rapid and consistent deployments.

So, let’s look at each of these steps in turn.
#1 - ANYTHING IN THE MASTER BRANCH IS DEPLOYABLE

This is basically the only hard rule of the system. There is only one branch that has any specific and
consistent meaning and we named it master. To us, this means that it has been deployed or at the worst
will be deployed within hours. It's incredibly rare that this gets rewound (the branch is moved back to an
older commit to revert work) - if there is an issue, commits will be reverted or new commits will be
introduced that fixes the issue, but the branch itself is almost never rolled back.

The master branch is stable and it is always, always safe to deploy from it or create new branches off of
it. If you push something to master that is not tested or breaks the build, you break the social contract of

the development team and you normally feel pretty bad about it. Every branch we push has tests run on it
and reported into the chat room, so if you haven't run them locally, you can simply push to a topic branch
(even a branch with a single commit) on the server and wait for Jenkins to tell you if it passes everything.

You could have a deployed branch that is updated only when you deploy, but we don’t do that. We
simply expose the currently deployed SHA through the webapp itself and curl it if we need a comparison
made.

#2 - CREATE DESCRIPTIVE BRANCHES OFF OF MASTER

When you want to start work on anything, you create a descriptively named branch off of the stable
master branch. Some examples in the GitHub codebase right now would be user-content-cache-
key, submodules-init-task or redis2-transition. This has several advantages - one is that
when you fetch, you can see the topics that everyone else has been working on. Another is that if you
abandon a branch for a while and go back to it later, it's fairly easy to remember what it was.

This is nice because when we go to the GitHub branch list page we can easily see what branches have
been worked on recently and roughly how much work they have on them.

https://web.archive.org/web/20121223081556/http://help.github.com/send-pull-requests/
https://web.archive.org/web/20121223081556/http://jenkins-ci.org/

ﬁgithub;‘glthub #Admin || Unwatch | 4 Fork | 4 Your Fork | | (g, Pull Request @ 16 4 12

Source Commits MNetwork Pull Requests (23) Fork Queue Issues (280) Wiki (98) Graphs Branch: muster

Swatch Branches (130) » Swatch Tags (0) Branch List (1Q, Search source coda. ..

Branches \ Recenty Active [mmy Siale
Showing 30 of 139 branches

ﬁ_SignuP e = Compare
Last updated 36 minutes ago by sr 0 behind

charlock-linguist e Py —
Last updated abaut 13 hours aga by josh 7 behind

git-http-server e Compara
Last updated abaut 14 hours ago by fomayko 7 betind

wild-renaming e = Compare
Last updated about 20 hours ago by defunkt 25 benind

no-inline-js-config 168 aheed Py—
Last updated 1 day ago by josh 57 behind

5"‘9“95*5 e b Compare
Last updated 1 day aga by jencostelio 45 benind

knyle-style-commits s Compara
Last updated 1 day aga by kneath 73 behind

enterprise-non-config [Compara
Last updated 2 days ago by nomayko &4 behind

menu-behavior-act-i = aneed P m—
Last updated 4 days ago by josh 150 behind

view-modes 5 el Eoris
| et inAastad R Aswe snn bw knoath S I D

It's almost like a list of upcoming features with current rough status. This page is awesome if you're not
using it - it only shows you branches that have unique work on them relative to your currently selected
branch and it sorts them so that the ones most recently worked on are at the top. If | get really curious, |
can click on the ‘Compare’ button to see what the actual unified diff and commit list is that is unique to that
branch.

So, as of this writing, we have 44 branches in our repository with unmerged work in them, but | can also
see that only about 9 or 10 of them have been pushed to in the last week.

#3 - PUSH TO NAMED BRANCHES CONSTANTLY

Another big difference from git-flow is that we push to named branches on the server constantly. Since the
only thing we really have to worry about is master from a deployment standpoint, pushing to the server
doesn’t mess anyone up or confuse things - everything that is not master is simply something being
worked on.

It also make sure that our work is always backed up in case of laptop loss or hard drive failure. More
importantly, it puts everyone in constant communication. A simple ‘git fetch’ will basically give you a TODO
list of what every is currently working on.

$ git fetch
remote: Counting objects: 3032, done.
remote: Compressing objects: 100% (947/947), done.
remote: Total 2672 (delta 1993), reused 2328 (delta 1689)
Receiving objects: 100% (2672/2672), 16.45 MiB | 1.04 MiB/s, done.
Resolving deltas: 100% (1993/1993), completed with 213 local objects.
From github.com:github/github
* [new branch] charlock-linguist -> origin/charlock-linguist
* [new branch] enterprise-non-config -> origin/enterprise-non-config

* [new branch] fi-signup -> origin/fi-signup
2647a42..4d6d2c2 git-http-server -> origin/git-http-server

* [new branch] knyle-style-commits -> origin/knyle-style-commits
157d2b0..d33e00d master -> origin/master

* [new branch] menu-behavior-act-i -> origin/menu-behavior-act-i
ealc5e2..dfd315a no-inline-js-config -> origin/no-inline-js-config

* [new branch] svg-tests -> origin/svg-tests
87bb870..9da23f3 view-modes -> origin/view-modes

* [new branch] wild-renaming -> origin/wild-renaming

It also lets everyone see, by looking at the GitHub Branch List page, what everyone else is working on so
they can inspect them and see if they want to help with something.

#4 - OPEN A PULL REQUEST AT ANY TIME

GitHub has an amazing code review system called Pull Requests that | fear not enough people know
about. Many people use it for open source work - fork a project, update the project, send a pull request to
the maintainer. However, it can also easily be used as an internal code review system, which is what we
do.

Actually, we use it more as a branch conversation view more than a pull request. You can send pull
requests from one branch to another in a single project (public or private) in GitHub, so you can use them
to say “I need help or review on this” in addition to “Please merge this in”.

Source Commits Network Pull Requests (23) Fork Queue Issues (280) Wiki (98) Graphs Branch: mastes

m josh wants someone to merge 11 commits into [letgdsy char lock-linguist #1497

Discussion & | Commits <3 [11 | DIff 3= (9 |

- |esh opened this pull request about 16 hours ago

Charlock+Linguist + 63 additions
Use Charlock to detect if blobs are binary or plain text. The encoding is then passed along to pygments.rb when the blob is - 40 deletians
rendered.

All Pull Requests

lcc @brianmario

- ! . josh, brianmarle, and tmm1 are participating in this pull request.

- # |o=h added some commits about 18 hours ago

24525hbd . Use charlock for blob binary and encoding detection

EEEE04S . Merge branch 'master' into charlock-linguist

u brianmario started a discussion in the diff about 16 hours ago

vehdor/internal -gems/ L inguist/linguist .gemspec View full changes

. BE -5,2 46,9 @R Gem:: Specification. mew do S|

& s.files = Dir['libs/++s%"]

7 =.executables <: 'linguist’

=]

=.add_deperdency ‘escape_utils', '0.2.3°
=.add_dependency ‘mime—types', ‘116"
=.add_dependency ‘pygments.rb', ‘Y: 0.2.0°
=.add_deperndency ‘charlock_holmes', '™: 0.6.0°

e :
- NE A [

! brianmarlo [[FREEY about 16 hours ago {0

I'd change this to 0.6.2 - | yanked 0.6.1 since it had that bug

Here you can see Josh cc’ing Brian for review and Brian coming in with some advice on one of the lines of
code. Further down we can see Josh acknowledging Brian’s concerns and pushing more code to address
them.

https://web.archive.org/web/20121223081556/http://help.github.com/send-pull-requests/

HE 4 Opts|:optlons| ||= {}

27 + opts[:options][:stripnl] ||= false
35 2B
=13 29 timeont opts.delete :timecut) || DEFAULT_TIMEOTUT do
37 20 begin
a8 a1 Prgment=. highlight(text, opts)
o2
u brianmario [l about 16 hours age (D)

So what are the defaults here if no encoding or lexer is passed?

Also there's at least one other place where the AP is expected to take an :encoding key (not nested under an :options
key/hash) - hitps://gthub. comig thub/github/blob/masterapp/modelsigist.h#L114

Only reason | did it that way was to sornta abstract the fact that we're using pygments far colarizing currently (not that we
have plans to change that anytime soon...)

[VRN oo cotas sbout 16 hours 390 (D
Alright, I'll pugh that down to colorize.
Add a line note

't Yalw!

. # |ogh added some commits about 16 hours ago

ae1 f182 . awvntax highlighter should lookup pygmentsz lexer
ad?fd6z Merge branch ‘master' into charlock-linguist

588151 Puzh encoding guess down Lo colorize

Q9B Fix colorize :encoding opt

E
E
erfo7ez [l Update gemfile.lock
¥
¥

ok Tae Ignore unknown code fence lexers

. & |ozh commented about 15 hours ago

@brlanmarlo think we're set for a branch deploy trial. Want to see how many exceptions will thiz knock aut.

Finally you can see that we're still in the trial phase - this is not a deployment ready branch yet, we use the
Pull Requests to review the code long before we actually want to merge it into master for deployment.

If you are stuck in the progress of your feature or branch and need help or advice, or if you are a developer
and need a designer to review your work (or vice versa), or even if you have little or no code but some
screenshot comps or general ideas, you open a pull request. You can cc people in the GitHub system by
adding in a @username, so if you want the review or feedback of specific people, you simply cc them in
the PR message (as you saw Josh do above).

This is cool because the Pull Request feature let's you comment on individual lines in the unified diff, on
single commits or on the pull request itself and pulls everything inline to a single conversation view. It also
let you continue to push to the branch, so if someone comments that you forgot to do something or there is
a bug in the code, you can fix it and push to the branch, GitHub will show the new commits in the
conversation view and you can keep iterating on a branch like that.

If the branch has been open for too long and you feel it's getting out of sync with the master branch, you
can merge master into your topic branch and keep going. You can easily see in the pull request discussion
or commit list when the branch was last brought up to date with the ‘master’.

. + |osh added soma commits about 16 houns ago

ecifiez [l swtax highlighter should lockup pygments lexer

Herge branch 'moster' into chorlock-linguist h

Push encoding guess down to colorize

ad? fd63

EA3151c
Bffb7Es Upstlate genf ile. lack

SOBTAE Fix colorize :encoding opt

OB T o Ignore unknown code fence lexers

When everything is really and truly done on the branch and you feel it's ready to deploy, you can move on
to the next step.

#5 - MERGE ONLY AFTER PULL REQUEST REVIEW

We don'’t simply do work directly on master or work on a topic branch and merge it in when we think it's
done - we try to get signoff from someone else in the company. This is generally a +1 or emoji or “:shipit:”
comment, but we try to get someone else to look at it.

e ¢ brlanmario commented August 17, 2011
v

H " blelkamp commented August 17, 2011
4

. & defunkt commented August 17, 2011

E # kneath added some commits August 17, 2011
don5z11 B4 Org ndAb notice needs new words.

E # kneath referenced this pull request from a commit August 17, 2011

a9abdeb ﬂ Merge pull request #1431 from githubsorgselector

ﬂ kneath merged commit aSabdeb into [EEd= from EigeEIEna S August 17, 2011

ﬂ kneath closed the pull request August 17, 2011

Once we get that, and the branch passes CI, we can merge it into master for deployment, which will
automatically close the Pull Request when we push it.

#6 - DEPLOY IMMEDIATELY AFTER REVIEW

Finally, your work is done and merged into the master branch. This means that even if you don't deploy it
now, people will base new work off of it and the next deploy, which will likely happen in a few hours, will
push it out. So since you really don’t want someone else to push something that you wrote that breaks
things, people tend to make sure that it really is stable when it's merged and people also tend to push their
own changes.

Our campfire bot, hubot, can do deployments for any of the employees, so a simple:

hubot depoy github to production

will deploy the code and zero-downtime restart all the necessary processes. You can see how common
this is at GitHub:

Rick hubot deploy github/oauth_cors to production Tue, Aug 2
Rick hubot lock deploy github migration db Tue, Aug 2
Rick hubot deploy github/oauth_cors to staging Tue, Aug 2
tmml hubot deploy github to the cloud Tue, Aug 2
tmml hubot deploy github to the cloud Tue, Aug 2
atmos hubot deploy logs for github Tue, Aug 2
atmos hubot deploy github to production Tue, Aug 2
Rick hubot deploy github to production/fs Tue, Aug 2
Rick hubot deploy github to production/archl Tue, Aug 2
Rick hubot deploy github to production/fs Tue, Aug 2
Rick hubot deploy github to production/fs Tue, Aug 2
sr hubot deploy github to production/fe Tue, Aug 2

sr hubot deploy github to production Tue, Aug 2

sr hubot deploy github to production Tue, Aug 2

sr hubot deploy github/ghost-town to production Tue, Aug 2
ekkub hubot deploy github to production Tue, Aug 2
sr hubot deploy github/ghost-town to staging Tue, Aug 2

sr hubot deploy github to production Tue, Aug 2
atmos hubot deploy github to production Tue, Aug 2
sr hubot deploy github to production Tue, Aug 2
atmos hubot deploy github to production Tue, Aug 2
atmos hubot deploy github to production Tue, Aug 2
atmos hubot deploy github to production Tue, Aug 2
meron hubot deploy github to production Tue, Aug 2
atmos hubot deploy github to staging Tue, Aug 2
atmos hubot deploy github to production/smtpl Tue, Aug 2
atmos hubot deploy github to production/fe,fs,auxl Tue, Aug 2
atmos hubot deploy github to production/fe,fs,aux1 Tue, Aug 2
atmos hubot deploy github to production Tue, Aug 2

You can see 6 different people (including a support guy and a designer) deploying about 24 times in one
day.

I have done this for branches with one commit containing a one line change. The process is simple,
straightforward, scalable and powerful. You can do it with feature branches with 50 commits on them that
took 2 weeks, or 1 commit that took 10 minutes. It is such a simple and frictionless process that you are
not annoyed that you have to do it even for 1 commit, which means people rarely try to skip or bypass the
process unless the change is so small or insignificant that it just doesn’t matter.

This is an incredibly simple and powerful process. | think most people would agree that GitHub has a very
stable platform, that issues are addressed quickly if they ever come up at all, and that new features are
introduced at a rapid pace. There is no compromise of quality or stability so that we can get more speed or
simplicity or less process.

Conclusion

Git itself is fairly complex to understand, making the workflow that you use with it more complex than
necessary is simply adding more mental overhead to everybody’s day. | would always advocate using the
simplest possible system that will work for your team and doing so until it doesn’t work anymore and then
adding complexity only as absolutely needed.

For teams that have to do formal releases on a longer term interval (a few weeks to a few months between
releases), and be able to do hot-fixes and maintenance branches and other things that arise from shipping
so infrequently, git-flow makes sense and | would highly advocate it's use.

https://web.archive.org/web/20121223081556/http://nvie.com/posts/a-successful-git-branching-model/

For teams that have set up a culture of shipping, who push to production every day, who are constantly
testing and deploying, | would advocate picking something simpler like GitHub Flow.

Don't forget to follow @chacon

https://web.archive.org/web/20121223081556/http://twitter.com/chacon

